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a b s t r a c t

This paper deals with local damages identification for strongly and weakly coupled

beam systems with close and repeated natural frequencies based on the measured

dynamic responses of the systems under external moving forces. The dynamic responses

of the coupled beam systems are calculated from Newmark integration method and

they are used for structural damage detection. The mode localization phenomenon due

to local damage(s) in the weakly coupled beam system is studied. In the inverse analysis,

a dynamic response sensitivity-based finite element model updating method is

employed for the detection of local damage(s) in the coupled beam systems. Numerical

simulation shows that the proposed method is effective in identifying the damages in

the coupled beam systems with good accuracy from several measurements. It is found

the proposed method is insensitive to artificial measurement noise and has the potential

for practical applications.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Structural damage detection using the dynamic characteristic parameters and dynamic responses has been a hot
research topic in the past few decades. A direct, fast and inexpensive method is therefore required to evaluate and localize
damage using the changes in dynamic responses between the intact and damaged states of the structure. There are a lot of
non-destructive methods in the literature for structural damage detection. Doebling et al. [1] provided a comprehensive
review on the damage detection methods by examining changes in the dynamic properties of a structure. Housner et al. [2]
presented an extensive summary on the state-of-the-art methods in the control and health monitoring of civil engineering
structures. Zou et al. [3] summarized the methods on vibration-based damage detection and health monitoring for
composite structures, especially in delamination modeling techniques and delamination detection.

Damage detection usually requires a mathematical model on the structure in conjunction with experimental modal
parameters of the structure. The identification approaches are mainly based on the change in the natural frequencies [4–6],
mode shapes [7–9] or measured modal flexibility [10–13]. The natural frequency is easy to measure with a high level of
accuracy, and is the most common dynamic parameter for damage detection. However, problems may arise in some
structures if only natural frequency is used, since the symmetry of the structure would lead to non-uniqueness in the
solution in the inverse analysis of damage detection. This problem can be overcome by incorporating the mode shape data
in the analysis. Finite element model updating method is the most popular tool for damage detection making use of these
modal parameters. A large number of gradient-based finite element model updating methods have been discussed by
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Friswell and Mottershead [14], and they have been used in damage detection of structures [15–20]. A two-stage method
has been proposed to differentiate the local damage and model error in the structure [13,21]. The finite element model of
the undamaged structure is firstly updated to remove most of the model errors to have a more accurate model. Then the
differences in the modal parameters between the damaged and the intact structures are used to estimate the changes in
the system parameters.

There are also literatures on damage detection in time domain using structural dynamic response. Cattarius and Inman
[22] used the time histories of vibration response of the structure to identify damage in smart structures. Majumder and
Manohar [23,24] proposed a time domain approach for damage detection in beam structures using vibration data. The
force induced by a vehicle moving on the bridge was taken to be the source of excitation. This paper also makes use of the
dynamic responses from the moving forces. Practically speaking, it is difficult to excite a large civil structure such as a long
span bridge using an exciter, so moving forces will be more suitable to be used as excitation force rather than the sinusoidal
force from an exciter. More recently, Chen and Li [25] and Shi et al [26] presented methods to identify structural parameters
and input time history from output-only measurements iteratively. Law and Zhu [27] proposed an approach for damage
detection in a concrete bridge structure in time domain.

To the authors’ knowledge, few papers in the literature deal with damage detection in the coupled beam systems
[28,29]. However, they did not deal with the case when the systems with close and repeated natural frequencies. As we
know, when the structures have repeated or close eigenvalues, in the damage detection, it may cause ill-conditioning or
rank deficiency in the solution [30]. This paper aims to identify the local damages in the coupled beam systems from the
response sensitivity-based finite element method using the measured dynamic responses in time domain. The systems
with both close and repeated natural frequencies for local damage detection will be investigated. Local damage in the
system is introduced as a reduction in the stiffness of individual elements (i.e. a reduction of the flexural rigidity EI), but the
other properties remain unchanged. This is similar to Refs. [31,32] by introducing the concept of the damage parameter in
each element. First of all, free vibration analysis is carried out for the coupled beam system from the finite element analysis.
The mode localization phenomenon is investigated in the weakly coupled beam system due to the disorder caused by local
damages. And the dynamic responses of the system are calculated from the direct integration method. Then, an inverse
problem is conducted to identify the local damages using response sensitivity-based finite element model updating
method in the strongly and weakly coupled systems and the effect of artificial measurement noise on damage detection is
investigated.
2. Forward analysis

2.1. Finite element model of the coupled beam system

Fig. 1 shows a general coupled beam system that consists of two beams arbitrarily coupled via a set of linear
and rotational springs. The use of the coupling springs can take into account the effects of many non-rigid connectors
such as point welds and bolt joints which are necessary in practice. When the coefficients of the coupling spring ks

and kr are small, the system is strongly coupled, and when the coefficients ks and kr are large, the system is weakly
coupled. In addition, the beams are generally supported on a set of elastic restraints at the boundary ends. So, the
traditional homogeneous boundary conditions can be directly obtained from this general boundary condition by
accordingly setting the stiffness constants of the springs to zero or infinity. In the finite element model of the damaged
systems, the local damage is modeled as a reduction in the elemental flexural rigidity EI, but the other properties remain
unchanged.

The equation of motion of the system under Nf moving forces by general finite element representation can be written as

Mf €dg þ Cf _dg þ Kfdg ¼ TfFðtÞg, (1)

where M, K, C are the system mass matrix, stiffness matrix and damping matrix, respectively, Rayleigh damping model is
adopted in the study, i.e., C ¼ a1Mþ a2K, where a1 and a2 are constants to be determined from two given damping ratios
that corresponding to two unequal modal frequencies of vibration. TFðtÞ is the equivalent nodal force vector from the
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Fig. 1. The dual-span coupled beam system with elastic supports under moving loads (1, 21: node number of FEM).
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where T is a N � Nf matrix with zero entries except at the degrees-of-freedom corresponding to the nodal displacements of
the beam elements on which the load is acting, and N is the number of degrees-of-freedom of the system after considering
the boundary condition. The components of the vector Ti evaluated for the ith moving force on the jth element is given by
the shape function
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with ðj� 1Þlpx̄iðtÞpjl, x̄iðtÞ is the location of the ith moving force, l is the length of the finite element.
Neglecting the damping of system and setting the nodal force vector to be null, one will obtained the equation of motion

of free vibration of the system and the natural frequencies and associated mode shapes of the system can be obtained from
the eigenvalue analysis.

For a given set of moving forces, dynamic response of the system can be calculated from Eq. (1) using direct integration
method.

3. Inverse problem

3.1. Dynamic response sensitivity with respect to the system parameters

In this paper, the local damages are simulated as reductions of the flexural rigidity EI in some elements of the system. In
the inverse analysis, the local damages in the system are identified using dynamic response sensitivity-based finite element
model updating method proposed by the authors [33]. The method is briefly reviewed as follows.

The dynamic response of the system is obtained from Eq. (1) from direct integration method, and then by taking partial
derivative to a certain damage parameter, i.e., the elemental flexural rigidity EI, we have

M
q €d

qEIi

( )
þ C

q _d

qEIi

( )
þ K

qd

qEIi

� �
¼ �

qK

qEIi
fdg � a2

qK

qEIi
f _dg ði ¼ 1;2; . . . ;nÞ, (4)

where n is the number of the finite elements of the system, f@d=@EIig, f@ _d=@EIig, f@ €d=@EIig are the displacement, velocity and
acceleration sensitivities with respect to the flexural rigidity of the ith element. Since the dynamic responses of the system
have been obtained from Eq. (1), the sensitivities can be obtained numerically by direct integration from Eq. (4), then the
response sensitivity matrix can be formed from these sensitivities.

3.2. Identification of system parameters

The identification problem can be expressed as follows to find the vector {EI} of the system such that the calculated
dynamic response R, for example, acceleration or displacement, etc., best matches the measured response R̂, i.e.

Q fRg ¼ fR̂g, (5)

where the selection matrix Q is a constant matrix with elements of zeros or ones, matching the degrees-of-freedom
corresponding to the measured response components.

Using the penalty function method [14], the identification equation can be expressed as

fDzg ¼ SfDEIg, (6)

where fDzg ¼ fR̂g � fRcalg is the discrepancy in the measured and calculated response, fDEIg is the perturbation in the
parameters, S is the time varying response sensitivity matrix, which contains the partial derivatives of the dynamic
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response with respect to the system parameters. For example, at time t ¼ ti, the sensitivity matrix can be expressed as
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where NM is the number of acceleration used in the identification.
Eq. (6) can be solved by simple least-squares method as follows:

fDEIg ¼ ½STS��1ST
fDzg. (8)

Like many other inverse problems, Eq. (8) is an ill-conditioned problem. In order to provide bounds to the solution, the
damped least-squares method (DLS) [34] is used and singular-value decomposition is used in the pseudo-inverse
calculation. Eq. (8) can be written in the following form in the DLS method:

fDEIg ¼ ½STSþ lI��1ST
fDzg, (9)

where l is the non-negative damping coefficient governing the participation of least-squares error in the solution. In the
present study, L-curve method [35] is used to obtain the optimal regularization parameter.

Once the increment in the elemental flexural rigidity vector fDEIg has been calculated from Eq. (9), the updated vector
can be obtained as follows:

fEIgjþ1 ¼ fEIgj þ fDEIgj, (10)

where j denotes the jth iteration.
4. Numerical simulation

4.1. Free vibration analysis for the coupled system

First of all, free vibration analysis is performed for the coupled beam system. The system is assumed to be simply
supported except otherwise specified, by setting the stiffness constants ksa and ksb to be a very large number, say 1:0� 1010

and the stiffness constants kra and krb to be zeros in the numerical calculations. The physical parameters of the system are:
Young’s modulus E ¼ 34 GPa, mass density r ¼ 2800 kg=m3, the width b ¼ 0:5 m, the depth h ¼ 1:0 m, sectional inertia
moment I ¼ ð1=12Þbh3, the total length L ¼ 30 m. For the strongly coupled system, the coefficients of the two coupling
springs are taken as: ks ¼ 4:65� 109 N=m, kr ¼ 4:65� 108 N m=rad; For the weakly coupled system, the coefficients of the
two coupling springs are assumed to be: ks ¼ 2:65� 1012 N=m, kr ¼ 2:65� 1011 N m=rad. The coupled beam system is
discretized into 20 Euler–Bernoulli beam elements with 21 nodes. The first eight natural frequencies of the intact strongly
and weakly coupled beam are listed in Tables 1 and 2, respectively. From the Table 1 one can see, the natural frequencies
cluster closely in each group, and in Table 2, the natural frequencies cluster equally in each group. The first eight mode
shapes for the intact strongly and weakly coupled beam are shown in Figs. 2 and 3, respectively. From these figures one can
Table 1
The first eight natural frequencies (Hz) of the strongly coupled system.

Mode no. Intact Single damage Multiple damages

1 10.24 10.23 10.15

2 10.96 10.95 10.85

3 33.43 33.30 33.01

4 35.49 35.36 34.97

5 70.21 69.84 69.23

6 73.95 73.62 72.81

7 120.83 120.31 119.44

8 126.27 125.82 124.74
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Table 2
The first eight natural frequencies (Hz) of the weakly coupled system.

Mode no. Intact Single damage Multiple damages

1 10.97 10.93 10.76

2 10.97 10.97 10.93

3 35.55 35.27 34.77

4 35.56 35.56 35.27

5 74.22 73.50 72.59

6 74.23 74.22 73.50

7 127.10 126.12 124.92

8 127.11 127.11 126.12
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Fig. 2. The normalized mode shape of the strongly coupled intact and damaged beam system (—— intact and - - - damaged).
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see, for the weakly coupled beam system, when there is a disorder (local damage), the mode localization phenomenon will
occur. For the damaged system, the local damages are modeled by assuming a 10 percent reduction in the flexural rigidity
in the 2nd, 11th and 19th elements of the system, respectively.
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Fig. 3. The normalized mode shape of the weakly coupled intact and damaged beam system (—— intact and - - - damaged).
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4.2. Damage detection for the strongly coupled system

In this section, the local damage(s) in the strongly coupled beam system with close natural frequencies is studied. The
coefficients of the two coupling springs are assumed to be: ks ¼ 4:65� 109 N=m, kr ¼ 4:65� 108 N m=rad. The following
three cases are investigated.

Study case 1: single damage identification: In this case, a local damage is simulated by a reduction in the flexural
rigidity in the 2nd element of the system by 10 percent. A moving force is assumed to be FðtÞ ¼ 16 000ð1þ
0:1 sinð5ptÞ þ 0:05 sinð15ptÞÞN, which moves from the left support of the coupled beam system to the right support
with a constant speed 5 m/s. Newmark integration method is adopted to obtain the dynamic response of the system and
the first two modal damping ratios are assumed to be 0.01. The time step is taken as 0.005 s and the time duration is 6 s, so
there are totally 1200 time response data in the identification, which is much greater than the number of unknowns 20.
Only three accelerometers locate at the 6th, 10th and 17th nodes of the system is used to collect the acceleration responses
for damage detection. In this case, the measurement data are assumed to be noise free. The local damage was identified
with good accuracy as shown in Fig. 4 in 11 iterations with the optimal regularization parameter l equal to 1:22� 10�9.



ARTICLE IN PRESS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

Element number

R
el

at
iv

e 
E

I r
ed

uc
tio

n 
(%

)

Fig. 4. Single damage identification for strongly coupled system (noise free).
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Fig. 5. Multiple damages identification in strongly coupled system (noise free).
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Study case 2: multiple damages identification with noise free measurement data: In this case, multiple local
damage detection is studied. Three local damages are introduced into the system, which locate at the 2nd, 11th, and
19th elements with a reduction in the flexural rigidities by 10, 10 and 15 percent, respectively. The same moving force
and the same three accelerometers as Study case 1 are used in the damage detection. These three local damages are
identified successfully in 14 iterations with the optimal regularization parameter l equal to 1:67� 10�9. Fig. 5 shows the
identified results.

Study case 3: multiple damages identification with noisy measurement data: In this case the effect of artificial
measurement noise on the identified results is investigated. A normally distributed random error with zero mean and a
unit standard deviation is added to the calculated acceleration to simulated the ‘‘noisy’’ measurement as shown below:

€̂d ¼ €dcal þ Ep � Noise � varð €dcalÞ, (11)

where €̂d is the vector of polluted acceleration response; Ep is the noise level ; Noise is a standard normal distribution vector
with zero mean and unit standard deviation; var( � ) is the variance of the time history. In the simulation, 5 and 10 percent
noise level is added to the calculated responses to simulate the measured noisy data, respectively. The same moving
force and the same three accelerometers as Study case 1 are used in the damage detection. Three simulated local damages
are identified successfully in 17 and 19 iterations with the optimal regularization parameter l equal to 8:9� 10�9 and
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Fig. 6. Multiple damages identification in strongly coupled system with noisy measurements (5 percent noise level).
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Fig. 7. Multiple damages identification in strongly coupled system with noisy measurements (10 percent noise level).
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9:2� 10�9 for 5 and 10 percent noise level, respectively. The identified results with different noise levels are shown in
Figs. 6 and 7. For 5 percent noise level, the maximum error in the identification is 1.2 percent in the 1st element and for
10 percent noise level, the maximum error is 2.3 percent in the 1st element. From these figures one can see, the proposed
method is not sensitive to the artificial measurement noise.
4.3. Damage detection in the weakly coupled beam system

Now we move to identify the local damage(s) in the weakly coupled beam system with repeated natural frequencies. As
we know, mode localization phenomena would occur in the weakly coupled beam system when there is local damage(s) in
the system. In this section, the effect of the mode localization on the damage detection is examined. The coefficients of
the two coupling springs are changed as: ks ¼ 2:65� 1012 N=m, kr ¼ 2:65� 1011 N m=rad. The following three cases are
studied.
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Fig. 8. Single damage identification weakly coupled system (noise free).
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Fig. 9. Multiple damages identification in weakly coupled system (noise free).
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Study case 4: single damage identification: Study case 1 is re-examined here. The same moving force and measurements
as Study case 1 are used for damage detection. Again, this local damage has been identified successfully as shown in Fig. 8
in 12 iterations with the optimal regularization parameter equal to 1:81� 10�9. This shows the mode localization has little
effect on the damage detection.

Study case 5: multiple damages identification with noise free measurement data: Study case 2 is re-examined. The same
moving force and measurements as Study case 2 are used for damage detection. Fig. 9 shows the identified results for
the system after 16 iterations with optimal regularization parameter l equal to 2:3� 10�9. From this figure one can see, the
three locations of the local damages in the system have been identified successfully without any false alarm in the
neighborhood of those damaged elements. This further shows the effectiveness of the proposed method for damage
detection.

Study case 6: Multiple damages identification with noisy measurement data: In this study case, Study case 5 is re-examined.
The same moving force and the same measurements as the last study case are used in the identification. Again, 5 and 10
percent noise level is added to the calculated responses to simulate the measured noisy data, respectively. Those three local
damages are identified with very good accuracy in 19 and 23 iterations with the optimal regularization parameter l equal
to 6:9� 10�8 and 7:4� 10�8 for noise level 5 and 10 percent, respectively. Figs. 10 and 11 show the identified results with
different noise levels. For 5 percent noise level, the maximum error in the identification is 1.8 percent in the 13th element
and for 10 percent noise level, the maximum error is 2.5 percent in the 13th element.
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Fig. 10. Multiple damages identification in weakly coupled system with noisy measurements (5 percent noise level).
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Fig. 11. Multiple damages identification in weakly coupled system with noisy measurements (10 percent noise level).
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4.4. Damage detection for the coupled beam system with elastic supports

The coupled beam system with more general boundary conditions is examined in this case; the coupled beam system is
arbitrarily coupled via a set of linear and rotational springs. The coefficients of those coupling springs are arbitrarily taken
as: ksa ¼ ksb ¼ 2� 105 N=m, kra ¼ krb ¼ 104 N m=rad, ks ¼ 8:5� 109 N=m, kr ¼ 8:5� 108 N m=rad. In the identification, the
same moving force and the same measurements as the last study case are used. Again, 5 and 10 percent noise level is added
to the calculated responses to investigate the effect of measurement noise on the identified results. Those three local
damages are identified successfully in 19 and 24 iterations with the optimal regularization parameter l equal to 4:9� 10�8

and 5:3� 10�8 for noise level 5 and 10 percent, respectively. The identified results with different noise levels are shown in
Figs. 12 and 13. For 5 percent noise level, the maximum error in the identification is 1.5 percent in the 1st element and for
10 percent noise level, the maximum error is 3.7 percent in the 1st element. This shows the robustness of the proposed
method for damage detection.

A further case is studied to check the effect of heavy measurement noise on the results of damage detection. A heavy
noise with 30 percent noise level is added to the calculated responses to simulate the measured noisy response. Again,
three local damages are identified successfully in 27 iterations with the optimal regularization parameter l equal to
5:4� 10�8. The identified result is shown in Fig. 14. Even under such noise level, the maximum error in the identification
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Fig. 12. Multiple damages identification in generally coupled system with noisy measurements (5 percent noise level).
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Fig. 13. Multiple damages identification in generally coupled system with noisy measurements (10 percent noise level).
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is around 4 percent in the 12th element. This shows that the proposed method is insensitive to artificial measurement
noise.
5. Conclusions

The local damages identification problem for the strongly and weakly coupled beam systems with close and repeated
natural frequencies is studied in the present study. It is found that the mode localization phenomenon would occur due to
local damage in a dual-span weakly coupled beam system. However, the mode localization has little effect on the damage
detection. Numerical simulation shows that the proposed method is effective for local damage identification in both
strongly and weakly coupled systems. And it is found the present method is not sensitive to artificial measurement noise,
this shows the proposed method has the potential for practical damage detection.



ARTICLE IN PRESS

2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Element number

R
el

at
iv

e 
E

I r
ed

uc
tio

n 
(%

)

Fig. 14. Multiple damages identification in generally coupled system with noisy measurements (30 percent noise level).
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